Age-related breast cancer risk estimates for the general population based on sequencing of cancer predisposition genes in 19,228 breast cancer patients and 20,211 matched unaffected controls from US based cohorts in the CARRIERS study

Fergus J. Couch, Ph.D. Mayo Clinic

This presentation is the intellectual property of the author/presenter. Contact (couch.fergus@mayo.edu) for permission to reprint and/or distribute

San Antonio Breast Cancer Symposium - December 4-8, 2018

Disclosures/ Conflict of Interest

Research support - GRAIL Inc.

Consultant - AstraZeneca – LUCY study

Travel - QIAGEN

Germline hereditary cancer genetic testing

Identify individuals and family members at increased risk of cancer

Increased risk for second primary cancer Multiple organ systems may be involved

· Prevention or early detection of cancer

Mammographic and MRI screening Surgical intervention

· Potential therapeutic benefit - PARP inhibitors, platinum agents

This presentation is the intellectual property of the author/presenter. Contact (couch.fergus@mayo.edu) for permission to reprint and/or distribute

San Antonio Breast Cancer Symposium - December 4-8, 2018

Germline hereditary cancer genetic testing

- Breast cancer risk estimates for predisposition gene mutations apply to high-risk patients qualifying for clinical genetic testing
- · Family history of cancer
- · Young age at diagnosis
- Multiple primary cancers
- Risk estimates for women in the general population remain to be defined

San Antonio Breast Cancer Symposium - December 4-8, 2018

Breast cancer risk estimates by panel gene

Gene	Relative Risk		
	Literature (Easton et al 2015)	Clinical testing (Couch et al 2017)	
ATM	2.8 (90% C.I. 2.2-3.7)	2.8 (95%C.I. 2.2-3.6)	
BARD1	Insufficient data	2.2 (95%C.I. 1.3-3.6)	
BRIP1	No evidence of association	1.6 (95%C.I. 1.1-2.4)	
CHEK2 (truncating)	3.0 (90% C.I. 2.6-3.5)	2.3 (95%C.L.1.9-2.9)	
CHEK2 (missense)	1.58 (95% C.I. 1.42-1.75) for I157T	1.5 (95%C.I. 1.3-1.7)	
MRF11A	Insufficient data	0.9 (95%C.L.0.5-1.6)	
NBN	2.7 (90% C.I. 1.9-3.7) for c.657del5	1.1 (95%C.I. 0.7-1.8)	
PALB2	5.3 (90% C.t. 3.0-9.4)	7.5 {95%CJ, 5.1-11.2}	
RAD50	Insufficient data	0.8 (95%C.I. 0.5-1.6)	
RAD51C	No evidence of association	0.8 (95%C.I. 0.5-1.4)	
RAD51D	No evidence of association	3.1 (95%C.I. 1.2-7.9)	

This presentation is the intellectual property of the author/presenter. Contact (couch.fergus@mayo.edu) for permission to reprint and/or distribute

San Antonio Breast Cancer Symposium - December 4-8, 2018

Research strategy

- Developed the CAnceR RIsk Estimates Related to Susceptibility "CARRIERS" study (Fergus Couch, David Goldgar, Katherine Nathanson, Peter Kraft, Jeffrey Weitzel, Susan Domchek, Eric Polley)
- Define the population-based frequencies of pathogenic mutations in cancer predisposition genes
- Estimate age-related and lifetime risks of breast cancer in the general population

QIAseq Custom Hereditary Cancer Gene Panel

ATM	CHEK2	NBN	RECQL
BARD1	FANCC	NF1	TP53
BRCA1	FANCM	PALB2	BLM
BRCA2	MLH1	PMS2	128 risk SNPs
BRIP1	MRE11A	PTEN	
CDH1	MSH2	RAD51C	
CDKN2A	MSH6	RAD51D	

This presentation is the intellectual property of the author/presenter. Contact (couch.fergus@mayo.edu) for permission to reprint and/or distribute

San Antonio Breast Cancer Symposium - December 4-8, 2018

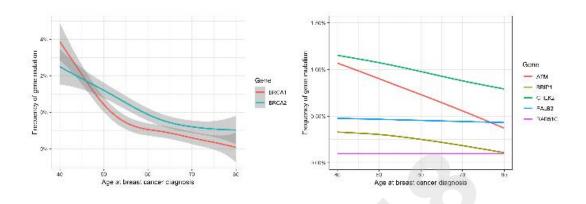
Case/control status by study

Studies	Case	Control	Total
Black Womens Health Study (BWHS)	1464 (4.9%)	2867 (9.6%)	4331 (7.2%)
Cancer Prevention Study 3 (CPS3)	1534 (5.1%)	1724 (5.8%)	3258 (5.4%)
Cancer Prevention Study 2 (CPS2)	3958 (13.2%)	3903 (13.1%)	7861 (13.1%)
California Teachers Study (CTS)	2185 (7.3%)	2064 (6.9%)	4249 (7.1%)
Multiethnic Cohort (MEC)	4460 (14.9%)	3205 (10.7%)	7665 (12.8%)
Nurses Health Study (NHS)	3606 (12.0%)	3681 (12.3%)	7287 (12.2%)
Nurses Health Study 2 (NHS2)	2072 (6.9%)	2412 (8.1%)	4484 (7.5%)
Womens Health Initiative (WHI)	929 (3.1%)	1341 (4.5%)	2270 (3.8%)
Mayo Clinic Breast Cancer Study (MCBCS)	2154 (7.2%)	1658 (5.6%)	3812 (6.4%)
Womens Circle of Health Study (WCHS)	4905 (16.3%)	4479 (15.0%)	9384 (15.7%)
Wisconsin Women Health Study (WWHS)	2756 (9.2%)	2498 (8.4%)	5254 (8.8%)
Total	30023	29832	59855

San Antonio Breast Cancer Symposium - December 4-8, 2018

Phenotypic characteristics of CARRIERS participants

Phenotype	Control	Case	Total
AgeDiag			
Mean (SD)	62.5 (11.3)	62.4 (11.4)	62.4 (11.4)
Range	21.8 - 94.3	21.0 - 94.0	21.0 - 94.3
Case Status			
invasive	0 (0.0%)	25368 (84.5%)	25368 (42.4%)
in situ	0 (0.0%)	3656 (12.2%)	3656 (6.1%)
Race			
African American	4940 (16.6%)	4003 (13.3%)	8943 (14.9%)
Asian	1257 (4.2%)	1271 (4.2%)	2528 (4.2%)
White	22342 (74.9%)	23322 (77.7%)	45664 (76.3%)
Other	1227 (4.1%)	1251 (4.2%)	2478 (4.1%)
Unknown	66 (0.2%)	176 (0.6%)	242 (0.4%)


This presentation is the intellectual property of the author/presenter. Contact (couch.fergus@mayo.edu) for permission to reprint and/or distribute

San Antonio Breast Cancer Symposium - December 4-8, 2018

Frequency of mutations for known breast cancer predisposition genes (all races and ethnicities)

Case mutation frequency 4.2% Control mutation frequency 1.6%

Age-related frequency of mutations in predisposition genes

This presentation is the intellectual property of the author/presenter. Contact (couch.fergus@mayo.edu) for permission to reprint and/or distribute

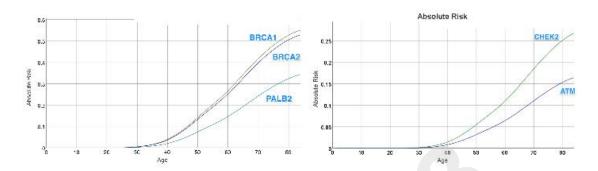
San Antonio Breast Cancer Symposium - December 4-8, 2018

Frequency of mutations in cases =<50 years at diagnosis

Case mutation frequency 7.3% Control mutation frequency 1.8%

CARRIERS breast cancer risk estimates by panel gene

	Relative Risk	p-value
ATM	1.7	0.001
BARD1	1.1	0.80
BRCA1	7.9	< 0.001
BRCA2	6.7	< 0.001
BRIPI	2.1	0.01
CHEK2 (truncating)	2.5	< 0.001
FANCIA	1.0	0.95
MRE11A	1.0	0.90
NBN	0.6	0.16
PALB2	4.8	< 0.001
RAD50	0.7	0.15
RAD51C	1.2	0.58
RAD51D	2.6	0.15
RECOL	1.0	0.89


This presentation is the intellectual property of the author/presenter. Contact (couch.fergus@mayo.edu) for permission to reprint and/or distribute

San Antonio Breast Cancer Symposium - December 4-8, 2018

CARRIERS TNBC risk estimates by panel gene

BRCA1 OR=39.8; 95%CI=25.8-62.4

Lifetime risk estimates for overall breast cancer

Overall CARRIERS odds ratio extrapolated to SEER incidence rates

This presentation is the intellectual property of the author/presenter. Contact (couch.fergus@mayo.edu) for permission to reprint and/or distribute

San Antonio Breast Cancer Symposium - December 4-8, 2018

Implications for Medical Management

Consider/Recommend	Discuss Option of RRM/	Unknown or insufficient	No increased
Breast MRI	Consider based on family history	evidence for BC risk	BC Risk
ATM BRCA1 BRCA2 CDH1 CHEK2 NBN NF1 PALB2 PTEN STK11 TP53	ATM BRCA1 BRCA2 CDH1 CHEK2 NBN NF1 PALB2 PTEN TP53	MLH1 MSH2 MRE11A MSH6 PMS2 RAD50 RAD51C ← RAD51D ←	BRIP1 ←

Summary for Panel Testing

- Testing of BRCA1, BRCA2, and moderate risk predisposition genes may result in improved clinical management of patients
- Accurate population-based and family history-based risk estimates for each gene are needed
- · Age-related risks must be defined for improved medical management of mutation carriers

This presentation is the intellectual property of the author/presenter. Contact (couch.fergus@mayo.edu) for permission to reprint and/or distribute

San Antonio Breast Cancer Symposium - December 4-8, 2018

Acknowledgements

MCBCS Kathryn Ruddy Janet Olson Judy Boughey Sandhya Pruthi Karthik Ghosh

Mayo Clinic Eric Polley Steven Hart Chunling Hu Kun Y. Lee Jie Na Tricia Harstad

Tricia Harstad Rohan Gnanaolivu CARRIERS
David Goldgar
Katherine Nathanson
Peter Kraft
Jeffrey Weitzel
Susan Domchek

Mia Gaudet Leslie Bernstein Paul Auer Julie Palmer Song Yao Christopher Haiman Amy Trentham-Dietz