Donor-Derived Anti-CD19 Chimeric-Antigen-Receptor-Expressing T Cells Cause Regression Of Malignancy Persisting After Allogeneic Hematopoietic Stem Cell Transplantation

James N. Kochenderfer, M.D.
Experimental Transplantation and Immunology Branch
National Cancer Institute
National Institutes of Health
Abstract 151 (James Kochenderfer) Donor-Derived Anti-CD19 Chimeric-Antigen-Receptor-Expressing T Cells Cause Regression of Malignancy Persisting After Allogeneic Hematopoietic Stem Cell Transplantation Clinically Relevant Abstract

Anti-CD19 Chimeric Antigen Receptors (CARs)

- T-cell activation domain
- Co-stimulatory domain
- Hinge and transmembrane region
- Antibody-derived recognition moiety
- CAR genes inserted into T cell via vector
- CAR-expressing T cell
- Anti-CD19 CAR protein
- CD19
- Cancer cell

Background

- Relapse of malignancy is a leading cause of death in patients undergoing allogeneic stem cell transplantation.

- B-cell malignancies persisting despite allogeneic stem cell transplantation are often treated with unmanipulated donor lymphocyte infusions.

- Donor lymphocyte infusions have inconsistent efficacy and are associated with significant morbidity and mortality from graft-versus-host disease.

- We aimed to improve treatment of B-cell malignancies after allogeneic transplantation by infusing allogeneic T cells that were genetically modified to express an anti-CD19 chimeric antigen receptor (CAR).
Trial design

- Patients with any CD19+ B-cell malignancy persisting after allogeneic transplantation and at least one standard DLI are potentially eligible.

- Patients must have minimal or no GVHD and must not be receiving any systemic immunosuppressive drugs.

- Patients receive a single infusion of anti-CD19-CAR-transduced T cells without any other interventions (no chemotherapy is given).

- The CAR-transduced T cells are derived from the original transplant donor.

- Phase I dose-escalation.
Summary of results

- 10 patients have been treated.

- 3 patients obtained substantial regressions of their malignancies.

- A patient with CLL obtained a complete remission that is ongoing after 12 months.

- Another patient with CLL had tumor lysis syndrome as his CLL regressed in bone marrow, blood, and lymph nodes.

- A third patient with mantle cell lymphoma obtained a partial remission.

- Toxicity was manageable and consisted mainly of fever, hypotension, and B-cell depletion.
Patient 5, who obtained an ongoing complete remission had been extensively treated before enrolling on the anti-CD19 CAR trial

- Diagnosed with CLL in 1996
- Multiple lines of chemotherapy
- Two matched sibling allogeneic transplants
- Unrelated donor transplant in 2009
- Multiple lines of chemotherapy for relapse post-transplant
- 5 unrelated donor lymphocyte infusions
Regression of adenopathy leading to complete remission in Patient 5 after infusion of allogeneic anti-CD19 CAR T cells

Before treatment

1 month after infusion

9 months after infusion
Allogeneic anti-CD19 CAR T cells have significant anti-malignancy activity when administered without prior chemotherapy.

Allogeneic anti-CD19 CAR T cells caused regressions of malignancy in patients who were not lymphocyte depleted.

Malignancies that were resistant to standard donor lymphocyte infusions regressed after administration of allogeneic anti-CD19 CAR T cells.

No patient developed GVHD after infusion of anti-CD19 CAR T-cells.

There is significant patient to patient variation in efficacy and toxicity.