Identification of a Notch-driven breast cancer stem cell gene signature for anti-notch therapy in an ER+ presurgical window model

Dr. Albain: Merck Oncology provided the compounds MK-0752 and MRK-003 studied in this project, constructed the microarrays from the human tumor biopsies and reimbursed patients for the extra biopsy. The Breast Cancer Research Foundation provided a research grant.

Dr. Zlobin: Nothing to disclose.
Dr. Covington: Nothing to disclose.
Dr. Hilsenbeck: Nothing to disclose.
Dr. Czerianis: Nothing to disclose.
Dr. Lo: Nothing to disclose.
Dr. Robinson: Nothing to disclose.
Dr. Guynor: Nothing to disclose.
Dr. Godellas: Nothing to disclose.

Dr. Bova: Nothing to disclose.
Ms. Czaplicki: Nothing to disclose.
Ms. Busby: Nothing to disclose.
Dr. Stiff: Nothing to disclose.
Dr. Fuqua: Nothing to disclose.
Dr. Osipo: Merck Oncology, Breast Cancer Research Foundation.
Identification of a Notch-Driven Breast Cancer Stem Cell Gene Signature for Anti-Notch Therapy in an ER-Positive Presurgical Window Model

Loyola University Chicago Cardinal Bernardin Cancer Center
Baylor College of Medicine Duncan Cancer Center
Louisiana State University Cancer Center

Background

- Resistance to endocrine therapy (ET) causes mortality, new treatment paradigms needed
- Cancer stem cells drive tumor growth, resistant to ET
- Notch signaling:
 - aids stem cell survival
 - aberrantly increased during ET
 - inhibited by gamma-secretase inhibitors (GSI)
- Adding GSI to ET has major anti-tumor effect in xenografts
- Presurgical window biomarker modulation study completed* to test strategy in humans

*Albain et al. PSABC 2011

This presentation is the intellectual property of the author/presenter. Contact Kathy S. Albain, MD at kathalb@lumc.edu for permission to reprint and/or distribute.
Endocrine Therapy (ET) Plus MK-0752 (GSI)
Presurgical Window Biomarker Modulation Study*
(20 patients, ER+, any age)

Day 1

Core biopsy

Tamoxifen 20 mg
OR Letrozole 2.5 mg PO daily x 14 days

Day 14

Core biopsy

Continue endocrine therapy x 10 days,
ADD
MK-0752 350 mg PO
3 days on
4 days off
3 days on*

Day 25

Definitive surgery

Global gene expression profiling by microarray
Validation by qRT-PCR

Candidate Biomarkers

Working Hypothesis from Preliminary Analyses

ERα

GSI

ET

Notch-1

Cyclin D1
RUNX1

MMP7

NOXA

Proliferation (Ki67), Endocrine resistance

This presentation is the intellectual property of the author/presenter. Contact Kathy S. Albain, MD at kathryn@lumc.edu for permission to reprint and/or distribute.
Objectives

- Identify genes/pathways affected by ET + added GSI from microarray analyses (3 time points)
- Select candidate genes to validate by qRT-PCR
- Confirm ET+GSI suppresses Notch-induced genes/pathways
- Determine genes critical for breast cancer stem cell survival and altered by GSI

Pathway Analyses
qRT-PCR Gene Validation
Key Genes and Pathways Modulated* by Short Exposure to GSI

- Notch signaling
- Cancer stem cells
- Cell cycle & proliferation
- Metastasis
- Fatty acid biosynthesis
- Estrogen signaling
- PI3-kinase/mTOR signaling
- Apoptosis
- Tumor suppression

* Affymetrix 20,000 gene expression microarrays (Albain et al. PSABC 2011)

METHODS qRT-PCR Analysis 33 Genes

This presentation is the intellectual property of the authors/presenter. Contact Kathy S. Albain, MD at kathys@lumc.edu for permission to reprise and/or distribute.
18 of 33 Genes Changed Significantly (FDR<8%)

<table>
<thead>
<tr>
<th>Expression Pattern</th>
<th>Interpretation</th>
<th>N of Genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>[graph]</td>
<td>Probable GSI effect</td>
<td>14</td>
</tr>
<tr>
<td>[graph]</td>
<td>GSI effect</td>
<td>0</td>
</tr>
<tr>
<td>[graph]</td>
<td>ET effect, or GSI effect added to ET effect</td>
<td>4</td>
</tr>
<tr>
<td>[graph]</td>
<td>No effect of either ET alone or of added GSI</td>
<td>15</td>
</tr>
</tbody>
</table>

ET, endocrine therapy; GSI, gamma secretase inhibitor

This presentation is the intellectual property of the author(s). Contact Kathy S. Abrams, MD at kablais@tumor.com for permission to reprint and/or distribute.

Notch Signaling

[Graphs showing gene expression over time with statistical significance notes]
Cell line and mammosphere analyses
METHODS
Genes Critical for Stem Cell Survival and Altered by GSI

- Performed mammosphere forming assays
- Measured cancer stem cell survival with/without GSI in 3 ER+ cell lines
- Knocked down or overexpressed 18 genes from the qRT-PCR results in an ER+ cell line (work in progress)
- Done in absence of estrogen (mimicking ET), with/without GSI

GSI Blocks Mammosphere Formation

This presentation is the intellectual property of the author/presenter. Contact Kathy S. Altshuler, MD at kaltshul@lunice.edu for permission to reprint and/or distribute.
GSI Blocks Mammosphere Formation

MCF-7 T47D ZR-75-1

Vehicle

GSI

Which of the 18 genes are necessary for inhibition of stem cell survival?

DAXX Required for GSI Blockade of Mammosphere Formation in Absence of E2

DAXX+ DAXX-low (knockdown)

-E2

-E2 + GSI

This presentation is the intellectual property of the author/presenter. Contact Kathy S. Altshuler, MD at labinfo@tumor.md for permission to reprint and/or distribute.
Conclusions

- Discovered genes/pathways affected by ET and ET+GSI from expression arrays of serial biopsies
- Selected 33 genes for validation by qRT-PCR
- Confirmed ET+GSI suppresses 18 Notch and Notch-induced genes
- Identified biomarker gene critical for Notch-regulated stem cell survival, may be predictor of GSI inhibition

Critical Cancer Genes and Pathways Significantly Modulated by Short Exposure to GSI during ET

At least one gene (DAXX) is required for GSI inhibition of mammosphere formation
Implications

- Notch regulates 18 genes that promote breast cancer stem cell growth, inhibited by GSI
- Genes could define a signature of anti-Notch GSI therapy efficacy
- DAXX (potentially others) may be predictive marker of GSI inhibition of stem cell survival

Future Plans

- Stem cell renewal inhibition and human xenograft recurrence studies (with GSI+ET) underway
- GSI MK-0752 has promise in optimizing ET and overcoming resistance
- Randomized neoadjuvant trial of ET versus ET+GSI warranted
 - efficacy
 - validate 18 gene signature predicts GSI benefit
 - test biomarker candidates (DAXX expression, others) as predictors of major response
Acknowledgements

- Our patients, who submitted to extra biopsies and postponed their surgery
- Breast Cancer Research Foundation (KSA, CO)
- DOD Fellowship grant BC073237 (KRC)
- Baylor Duncan Cancer Center NCI grant CA125123 (SGH, SAWF, KRC)
- NCI P01CA166009 (LM)