S2-03
Preoperative window of opportunity study of the PI3K inhibitor pictilisib (GDC-0941) plus anastrozole vs anastrozole alone in patients with ER+, HER2-negative operable breast cancer

(OPPORTUNE study)

Dr. Schmid: Contract, Genentech (research support).
Dr. Pinder: Nothing to disclose.
Dr. Wheatley: Nothing to disclose.
Dr. Macaskill: Nothing to disclose.
Dr. Zammit: Nothing to disclose.
Dr. Hu: Nothing to disclose.
Dr. Price: Nothing to disclose.
Dr. Bundred: Nothing to disclose.
Dr. Hadad: Nothing to disclose.
Dr. Shia: Nothing to disclose.
Dr. Lim: Nothing to disclose.
Dr. Sarker: Nothing to disclose.

Dr. Gozinska: Nothing to disclose.
Dr. Woodman: Nothing to disclose.
Dr. Korbie: Nothing to disclose.
Dr. Makinwaring: Nothing to disclose.
Dr. Parker: Nothing to disclose.
Dr. Purushotham: Nothing to disclose.
Dr. Thompson: Nothing to disclose.
Preoperative window of opportunity study of the PI3K inhibitor Pictilisib (GDC-0941) plus Anastrozole vs Anastrozole alone in patients with ER+, HER2-negative breast cancer (OPPORTUNE study)

on behalf of the OPPORTUNE study investigators

Barts Cancer Institute, St Bartholomew’s Hospital; Queen Mary University of London

Background and Rationale

– PI3K/mTOR signaling has been implicated as a resistance mechanism to endocrine therapies.4

– PIK3CA mutations are predictive of sensitivity to PI3K inhibitors in preclinical studies5, but the patient population that benefits most from PI3K/mTOR inhibition is not defined.

– Pictilisib (GDC-0941), a pan-class I PI3K inhibitor, has shown substantial preclinical activity in ER+ breast cancer models.

– Preoperative window studies are a validated strategy to evaluate novel treatments in ER+ breast cancer and can help characterise the optimal target population.7,8

– Change in Ki67 expression after 2 weeks of treatment has been shown to be closely linked with relapse free survival.9

1 Miller et al., JCO 2010; 2 Baselga et al., NEJM 2012; 3 Bachet et al., JCO 2012; 4 Krop et al., SABCS 2014; 5 O’Brien et al., CCR 2010; 6 Raymond et al., MCT 2009; 7 Dowsett et al., JCO 2005; 8 Polychronis et al., Lancet Oncol 2005; 9 Dowsett et al., CCR 2005

This presentation is the intellectual property of Prof. Peter Schmid; contact at pschmid@qmul.ac.uk for permission to reprint and/or distribute
OPPORTUNE Study Design

- Randomisation (2:1) favouring the combination, stratified by Centre & Grade
- Study dosing once daily for 14 days (+/- 2 days)
 - Anastrozole: 1 mg
 - Pictilisib: initially 340 mg; changed to 260 mg in 08/2012
- Adjuvant therapy as indicated
- 1st analysis of primary endpoint scheduled after 70 evaluable patients;
2nd analysis after 141 patients focusing on subset analyses and additional biomarkers

Primary Endpoint:
- Change in tumour cell proliferation (Ki67 IHC1)

Secondary Endpoints:
- Induction of tumour-cell apoptosis (Caspase-3 IHC)
- Safety and tolerability

Tertiary Endpoints: Treatment effect by
- Molecular subtype (PAM50 Nanostring)
- Baseline tumour cell proliferation (Ki67 IHC)
- PI3K pathway alterations (PIK3CA NGS, PTEN IHC)

1 Central analysis; Primary antibody: Confirm anti-Ki67 (Ventana); Target cutoff >=1000 cells; Independently scored by 2 reviewers blinded to treatment allocation

This presentation is the intellectual property of Prof. Peter Schmid; contact at p.schmid@qmul.ac.uk for permission to reprint and/or distribute.
Study Population

- 88 patients screened
- 75 randomised
- 13 screening failures

26 assigned to Anastrozole

49 assigned to Pictilisib plus anastrozole

- 2 excluded
- 1 HER2+
- 1 tumour size <1cm

47 treated with Pictilisib plus Anastrozole

- 3 excluded
- 2 had AfIs
- 1 insufficient tissue

44 evaluable

A	A + P
N | 26 | 44

<table>
<thead>
<tr>
<th>Grade</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>G1/2</td>
<td>85%</td>
<td>84%</td>
</tr>
<tr>
<td>G3</td>
<td>15%</td>
<td>16%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BL Ki67</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>≤14%</td>
<td>35%</td>
<td>39%</td>
</tr>
<tr>
<td>>14%</td>
<td>65%</td>
<td>61%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PAM50</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lum A</td>
<td>32%</td>
<td>41%</td>
</tr>
<tr>
<td>Lum B</td>
<td>68%</td>
<td>59%</td>
</tr>
</tbody>
</table>

Individual Change in Ki67

Anastrozole

- 10/26 (38.5%)

Anastrozole + Pictilisib

- 2/44 (4.5%)

- 16/26 (61.5%)
- 42/44 (95.5%)

This presentation is the intellectual property of Prof. Peter Schmid; contact at p.schmid@qnul.ac.uk for permission to reprint and/or distribute.
Individual Relative Ki67 Suppression

1 Relative Ki67 Suppression, defined as \(\ln(\text{Ki67}_{\text{Day15}}) - \ln(\text{Ki67}_{\text{baseline}}) \).

2 \(\Delta \text{Ki67} \) Response, defined as a 50% fall in Ki67 score between Day15 and Baseline.

Primary Endpoint
Geometric mean Ki67 Suppression

\[
\begin{align*}
A & \quad (n = 26) & A + P & \quad (n = 44) \\
\text{Mean Ki67 Suppression (}) & \quad -66.0\% & -83.8\% \\
\text{P = 0.004} & \\
\text{A+P/A Ratio (95%CI), 0.48 (0.29 - 0.78)} & \\
\end{align*}
\]

Geometric mean Ki67 Suppression defined as \(\ln(\text{Ki67}_{\text{Day15}}) - \ln(\text{Ki67}_{\text{baseline}}) \).

This presentation is the intellectual property of Prof. Peter Schirid, contact at p.schirid@qmul.ac.uk for permission to reprint and/or distribute.
Primary Endpoint (Secondary Analyses)
Ki67 Response Rates

End of treatment Ki67 Response, defined as $\ln(\text{Ki67}_{\text{Day15}}) \leq 2$

<table>
<thead>
<tr>
<th>Group</th>
<th>Ki67 Response Rate (%)</th>
<th>P</th>
<th>RR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>61.5%</td>
<td>0.003</td>
<td>1.48 (1.67-2.03)</td>
</tr>
<tr>
<td>A + P</td>
<td>90.0%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ΔKi67 Response Rates, defined as ≥50% fall in Ki67 score between Day15 and Baseline

<table>
<thead>
<tr>
<th>Group</th>
<th>Ki67 Response Rate (%)</th>
<th>P</th>
<th>RR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>53.9%</td>
<td>0.003</td>
<td>1.60 (1.10-2.33)</td>
</tr>
<tr>
<td>A + P</td>
<td>86.4%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Change in Apoptosis (Caspase-3)

% Change in Apoptosis
[Caspase-3* (%), (geometric mean, 95% CI)]

<table>
<thead>
<tr>
<th>Group</th>
<th>Mean Change in Caspase 3 (%)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-10.4% (95%CI -43.6-42.2)</td>
<td>0.90</td>
</tr>
<tr>
<td>A + P</td>
<td>-13.9% (95%CI -45.0-34.7)</td>
<td></td>
</tr>
</tbody>
</table>

*Central analysis; Primary antibody: Cleaved Caspase-3 (Cell Signalling), target count ≥3000 cells; independently scored by 2 reviewers blinded to treatment allocation.

This presentation is the intellectual property of Prof. Peter Schmid, contact at p.schmid@qmul.ac.uk for permission to reprint and/or distribute.
Most common adverse events (≥10%)

<table>
<thead>
<tr>
<th></th>
<th>Anastrozole</th>
<th>Anastrozole + Pictilisib 340 mg</th>
<th>Anastrozole + Pictilisib 260 mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fatigue</td>
<td>G1 G2 G3</td>
<td>G1 G2 G3</td>
<td>G1 G2 G3</td>
</tr>
<tr>
<td></td>
<td>23% 0 4%</td>
<td>50% 38% 0</td>
<td>13% 3% 0</td>
</tr>
<tr>
<td>Rash</td>
<td></td>
<td>13% 13% 38%</td>
<td>8% 3% 3%</td>
</tr>
<tr>
<td>Diarrhoea</td>
<td>4% 0 0</td>
<td>38% 13% 0</td>
<td>44% 8% 0</td>
</tr>
<tr>
<td>Dysgeusia</td>
<td>4% 0 0</td>
<td>25% 0 0</td>
<td>5% 5% 0</td>
</tr>
<tr>
<td>Dyspepsia</td>
<td>0 0 0</td>
<td>13% 0 0</td>
<td>13% 5% 0</td>
</tr>
<tr>
<td>Anorexia</td>
<td>4% 0 0</td>
<td>13% 13% 0</td>
<td>13% 0 0</td>
</tr>
<tr>
<td>Nausea</td>
<td>4% 8% 0</td>
<td>63% 25% 0</td>
<td>36% 5% 0</td>
</tr>
<tr>
<td>Vomiting</td>
<td>0 0 0</td>
<td>13% 9% 0</td>
<td>3% 10% 0</td>
</tr>
<tr>
<td>Stomatitis</td>
<td>0 0 0</td>
<td>0% 13% 0</td>
<td>5% 0 0</td>
</tr>
<tr>
<td>Hyperglycaemia</td>
<td>0 0 0</td>
<td>0% 0 0</td>
<td>5% 3% 3%</td>
</tr>
<tr>
<td>Creatinine</td>
<td>0 0 0</td>
<td>25% 14% 0</td>
<td>8% 0 0</td>
</tr>
<tr>
<td>Arthralgia</td>
<td>19% 0 0</td>
<td>13% 0 0</td>
<td>3% 0 0</td>
</tr>
<tr>
<td>Headache</td>
<td>8% 8% 0</td>
<td>0 13% 0</td>
<td>8% 0 0</td>
</tr>
<tr>
<td>Hot flushes</td>
<td>23% 0 0</td>
<td>0 0 0</td>
<td>3% 3% 0</td>
</tr>
</tbody>
</table>

PI3K Pathway Alterations & Response

Geometric mean Ki67 Suppression

<table>
<thead>
<tr>
<th></th>
<th>Favouring Anastrozole + Pictilisib</th>
<th>Favouring Anastrozole</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIK3CA mutant(^1) (n = 25)</td>
<td>0.65 (0.33 – 1.30)</td>
<td>0.32 (0.12 – 0.89)</td>
</tr>
<tr>
<td>Helical domain (n = 9)</td>
<td>0.32 (0.12 – 0.89)</td>
<td>0.76 (0.30 – 1.94)</td>
</tr>
<tr>
<td>Kinase domain (n = 14)</td>
<td>0.76 (0.30 – 1.94)</td>
<td>0.46 (0.24 – 0.94)</td>
</tr>
<tr>
<td>PIK3CA WT (n = 38)</td>
<td>0.46 (0.24 – 0.94)</td>
<td></td>
</tr>
<tr>
<td>PTEN positive(^2) (n = 56)</td>
<td></td>
<td>0.40 (0.23 – 0.71)</td>
</tr>
<tr>
<td>PTEN negative (n = 3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No PI3K alteration(^*) (n = 41)</td>
<td></td>
<td>0.32 (0.15 – 0.67)</td>
</tr>
<tr>
<td>PI3K alteration (n = 28)</td>
<td></td>
<td>0.75 (0.40 – 1.42)</td>
</tr>
<tr>
<td>All Patients</td>
<td></td>
<td>0.48 (0.29 – 0.78)</td>
</tr>
</tbody>
</table>

\(^1\) Targeted NGS (P1 chip and Ion PI Sequencing 200 v3 Kit Ampliseq Comprehensive Cancer panel)
\(^2\) Central IHC analysis, Primary antibody: PTEN (13666; Cell Signalling #6559)
\(^*\) PIK3CA mutation and/or loss of PTEN

This presentation is the intellectual property of Prof. Peter Schirrid; contact at p.schirrid@qmul.ac.uk for permission to reprint and/or distribute.
Geometric mean Ki67 Suppression by Subtype (PAM50)

Luminal A
(n = 20)
-76.9%
Mean Ki67 suppression (%)
P = 0.98
A+P/A Ratio (95%CI),
1.01 (0.45 – 2.26)

Luminal B
(n = 33)
-76.6%
-63.6%
-86.5%
P = 0.008
A+P/A Ratio (95%CI),
0.37 (0.18 – 0.76)

* PAM50 Nanorstring

Ki67 Suppression in Subgroups

Geometric mean Ki67 Suppression

<table>
<thead>
<tr>
<th>Subgroup</th>
<th>Favouring Anastrozole + Pictilisib</th>
<th>Favouring Anastrozole</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luminal A (n = 20)</td>
<td>1.01 (0.45 – 2.26)</td>
<td></td>
</tr>
<tr>
<td>Luminal B (n = 33)</td>
<td>0.37 (0.18 – 0.76)</td>
<td></td>
</tr>
<tr>
<td>Ki67 ≤14% (n = 26)</td>
<td>0.59 (0.25 – 1.36)</td>
<td></td>
</tr>
<tr>
<td>Ki67 >14% (n = 44)</td>
<td>0.41 (0.22 – 0.74)</td>
<td></td>
</tr>
<tr>
<td>PgR positive (n = 55)</td>
<td>0.56 (0.32 – 0.97)</td>
<td></td>
</tr>
<tr>
<td>PgR negative/? (n = 15)</td>
<td>0.16 (0.04 – 0.59)</td>
<td></td>
</tr>
<tr>
<td>All Patients</td>
<td>0.48 (0.29 – 0.78)</td>
<td></td>
</tr>
</tbody>
</table>
Summary and Conclusions

- Addition of the PI3K inhibitor Pictilisib significantly increased the anti-proliferative response to Anastrozole in ER+ early breast cancer
- Subset analyses suggest increased benefit of Pictilisib for patients with Luminal B or highly-proliferative tumours
- PIK3CA mutations or PTEN status were not predictive of response to Pictilisib
- The addition of Pictilisib to Anastrozole was not associated with an increase in tumour cell apoptosis
- The safety profile of the combination is acceptable and consistent with other trials

Acknowledgements

Thank you to patients and families who participated in this study

Clinical/Research Teams at Sites:
- Guys & St Thomas NHS Trust, London;
- Royal Cornwall Hospital, Turo;
- Ninewells Hospital Dundee;
- Brighton & Sussex University Hospitals;
- Barts Health NHS Trust, London;
- Kings College Hospital, London;
- University Hospital of South Manchester;
- Royal Hallamshire Sheffield

Barts/Brighton ECMC
- BSUH (Sponsor)
- Gemma Earl, Hannah Butler, Scott Harfield
- BSUH-CIRU, BSMS, SHORE

Barts Cancer Institute
- Barts-CECM,
- Shah-Jalal Sarker, Kashfia Chowdhury, Alice Shia, Catherine Durance

Labs at Guys, Barts, AIBN, South San Francisco
- Sarah E Pinder, Alice Shia, Vikki Haley, Natalie Woodman, Cheryl Gillot, Patrycja Gazinska, Darren Korbie, Paul Mainwaring, Matt Trau, Mike Pheasant, Dennis Gascoigne, Mark Lackner, Steve Gendreau, Carol O'Brien, Yuanyan Xiao, Tim Wilson,

Core Development Team
- Ann Purushotham,
- Alastair M. Thompson,
- Sarah E Pinder,
- Peter Parker
(Peter Schmid)

Funding
- CRUK (through ECMC network);
- NIHR (through ECMC & NCRN networks);
- Genentech

Genentech
- Mark Lackner, Steve Gendreau, Mika Derynck

This presentation is the intellectual property of Prof. Peter Schmid; contact at p.schmid@qmul.ac.uk for permission to reprint and/or distribute.
Preoperative window of opportunity study of the PI3K inhibitor pictilisib (GDC-0941) plus anastrozole vs anastrozole alone in patients with ER+, HER2-negative operable breast cancer (OPPORTUNE study)

Professor Peter Schmid, MD PhD FRCP
Lead, Centre for Experimental Cancer Medicine
Barts Cancer Institute, St Bartholomew’s Hospital
Queen Mary University of London