HER2 T cell dependent bispecific antibody (HER2-TDB) for treatment of HER2 positive breast cancer

Dr. Junttila: Salary, Genentech.
Dr. Li: Salary, Genentech.
Dr. Johnston: Salary, Genentech.
Dr. Hristopoulou: Salary, Genentech.
Dr. Clark: Salary, Genentech.
Dr. Ellerman: Salary, Genentech.
Dr. Wang: Salary, Genentech.
Dr. Li: Salary, Genentech.
Dr. Mathieu: Salary, Genentech.
Dr. Li: Salary, Genentech.
Dr. Young: Salary, Genentech.
Dr. Luis: Salary, Genentech.
Dr. Lewis Phillips: Salary, Genentech.
Antitumor efficacy of HER2-TDB

Teemu Juntila
Genentech Inc.
San Antonio Breast Cancer Symposium
Dec 10th/2014

T cell dependent bispecific antibody (TDB) platform

- Produced using modular “knobs into holes” technology
- Effector functions removed (E. coli production / N297A)
- Minimal immunogenic potential
- PK is similar to conventional IgG1

Ridgeway...Carter. 1996 Proc. Engineering
Production of the TDBs

• Production in E. coli or CHO (with effector mutation)
• Standard purification methods
• Industrial scale (ontuzumab)
• High quality drug substance (No aggregation or αCD3-αCD3 homo dimers)

Rationale for developing HER2-TDB for HER2+ breast CA

• HER2 is a clinically validated target
• HER2+ cancer is not cured
• Novel MOA - may be effective in chemoresistant tumors

T-DM1 median PFS 9.6 mo (EMILIA) T-DM1 median OS 31 mo (EMILIA)
4D5-TDB is more potent than 2C4 and 7C2-TDBs

<table>
<thead>
<tr>
<th>HER2-TDB</th>
<th>KD (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4D5</td>
<td>0.4</td>
</tr>
<tr>
<td>2C4</td>
<td>2.0</td>
</tr>
<tr>
<td>7C2</td>
<td>1.7</td>
</tr>
</tbody>
</table>

Small ECD size and proximity of epitope to membrane correlate with activity

4D5 = Trastuzumab, 2C4 = Pertuzumab

T. Juntila, X. Chen, M. Dennis

TDB mechanism of action

No ADCC activity

Target dependent killing

Induces T cell proliferation

CD3+ cell fold change

Teemu Junttila, Ji Li
Pharmacokinetic profile of HER2-TDB

- Single 10 mg/kg IV dose in non-binding species (Rat)
- Slow clearance and expected long in vivo half-life

HER2-TDB vs. Trastuzumab

<table>
<thead>
<tr>
<th>Parameter</th>
<th>HER2-TDB</th>
<th>Trastuzumab</th>
</tr>
</thead>
<tbody>
<tr>
<td>CL (mL/day/kg)</td>
<td>10 ± 2</td>
<td>8 ± 1</td>
</tr>
<tr>
<td>AUC (day*ug/mL)</td>
<td>1328 ± 247</td>
<td>1553 ± 176</td>
</tr>
<tr>
<td>C_max (ug/mL)</td>
<td>377 ± 31</td>
<td>314 ± 41</td>
</tr>
<tr>
<td>V_t (mL/kg)</td>
<td>33 ± 3</td>
<td>40 ± 5</td>
</tr>
<tr>
<td>HL_beta (Day)</td>
<td>7 ± 1</td>
<td>10 ± 1</td>
</tr>
</tbody>
</table>

Extremely potent & broad range activity

- EC_{50} 1-10 pM in 24h viability assay
- Only 10-500 HER2 occupied at EC_{50} (= 0.01-1%)

Teemu Juntila
HER2-TDB kills T-DM1 resistant cells

Resistance mechanisms of T-DM1

- Increased expression of drug efflux pumps
- Reduced HER2 expression
- Parallel growth factor signaling
- Up-regulated pro-survival signals

 ↑Bcl-2 ↑PTEN ↑DUSP6 ↑CARPP32

Gail Phillips lab

HER2-TDB sensitivity

Viability (% CTRL)

![Graph showing HER2-TDB sensitivity](image)

EC_{50} 1.6 pM

EC_{50} 1.7 pM

Ginny Li, Gail Phillips, Ji Li

Tumor regression in treatment of MMTV huHER2 GEMM

Vehicle

HER2-TDB

![Graph showing tumor regression](image)

> 1000 mm³ tumors regress

- **Model:** MMTV-huHER2 GEMM (not allograft tumors)
- **TDB:** m4D5-2C11 (mlgG2)
- **Dose:** 0.5 mg/kg weekly (x5) IV

Clark, Wang, Dela Cruz, Totpal, Juntila T, Juntila M
Robust PD response

- CD45+, CD8+ and IFNγ+CD8+ cells increase in tumor (detectable at 4h)

Response to treatment

Vehicle HER2-TDB

Effect of HER2-TDB on TILs

- CD45+ p<0.01
- CD8+ 0.0002

TIL data: 6D post 0.5 mg/kg HER2-TDB dose

Ji Li, Robyn Clark, Bu-Er Wang

Transient anti-tumor activity in treatment of syngeneic tumors

Tumor Model: CT26-HER2
HER2-TDB: 4D5:omCD3(2C11)
Dose: 0.5 mg/kg weekly (x5) IV

Vehicle HER2-TDB

Tumor vol (mm³)

Day

M. Hristopoulos, K. Tolpal, T. Jurttila
Does PD-1/PD-L1 signaling inhibit TDB activity?

- Cellular analysis of CT26-HER2 tumors

Ji Li

MMTV-huHER2 tumors are PD-L1 negative
PD-L1 expression by tumor cell may affect TDB activity

- PD-L1-expression in target cells inhibits TDB activity
- Potential diagnostic for TDB activity
- Mechanistic rationale for combining HER2-TDB with anti-PD-L1

Ji Li

HER2-TDB anti-PDL1 combination is effective in treatment of CT26-HER2 tumors

- Combination of TDB and anti-PD-L1: Enhanced inhibition of tumor growth, increased response rates, durable responses

Tumor Model: CT26-HER2
- α-PDL1: 25A1 (DANA, tw13)
- HER2-TDB: 4D5-SP34 (mAb22a DANG, qwa3)

Rebny Clark, Maria-Hristopoulos, Klara Tolpet, Teemu Junttila
Target expression based therapeutic index for HER2-TDB

- HER2 amplified cells are significantly more sensitive vs. cells expressing low/normal levels of HER2
 → Therapeutic index
- Next: Evaluate safety of the HER2-TDB using appropriate preclinical models.

Teemu Junttila, Ji Li

Key messages

TDBs induce polyclonal T cell response to tumor cells

Full-length IgG1 bispecific format has favourable drug-like properties

HER2-TDB has impressive anti-tumor activity
 - pM activity in broad range of HER2+ cells
 - MOA effective for cells insensitive to HER2 targeted therapies and chemo
 - Induces regression of large MMTV-huHER2 tumors

PD-1/PD-L1 signaling restricts activity of bispecific T cell recruiting ABs
Acknowledgements

Data in the presentation is published in Cancer Res 2014 Oct 16;74(19):5561-71

Allen Ebens
Xiaccheng Chen
Yvonne Chen
Wayne Chu
Robyn Clark
Chris Dela Cruz
Mark Dennis
Christina de Zafra
Noel Dybdal
Diego Ellerman
Maria Hristopoulos

Jennifer Johnston
Melissa Junttila
Bob Kelley
Hartmut Koeppen
Michelle Lewis
Ji Li
Kedan Lin
Elaine Mai
Mary Mathieu
Luke McCarty

Dion Slaga
Mark Sliwkowski
Christoph Spiess
Eric Stefanich
Klara Totpal
Bu-Er Wang
Judy Young