S6-01
JAK2 amplifications are enriched in triple negative breast cancers (TNBCs) after neoadjuvant chemotherapy and predict poor prognosis

Dr. Balko: Nothing to disclose.
Dr. Giltinane: Nothing to disclose.
Dr. Schwarz: Nothing to disclose.
Dr. Sanders: Nothing to disclose.
Dr. Wang: Salary, Foundation Medicine; Ownership Interest, Foundation Medicine.
Dr. Harris: Nothing to disclose.
Dr. Lin: Nothing to disclose.
Dr. Miller: Salary, Foundation Medicine; Ownership Interest, Foundation Medicine.
Dr. Stephens: Salary, Foundation Medicine; Ownership Interest, Foundation Medicine.
Dr. Yelensky: Salary, Foundation Medicine; Ownership Interest, Foundation Medicine.
Dr. Pinto: Nothing to disclose.
Dr. Gomez: Nothing to disclose.
Dr. Arteaga: Nothing to disclose.

JAK2 amplifications are enriched in triple negative breast cancers after neoadjuvant chemotherapy and predict poor prognosis

Balko JM1,4, Giltinane JM3,4, Schwarz L1, Sanders ME3,4, Wang K5, Harris LN6, Lin NU7, Miller VA5, Stephens PJ5, Yelensky R5, Pinto JA8, Gomez H9, Arteaga CL1,7,4

1Departments of Medicine1, Cancer Biology1, and Pathology4 and Breast Cancer Research Program4, Vanderbilt-Ingram Cancer Center; Vanderbilt University, Nashville, TN
2Foundation Medicine, Cambridge, MA
3Breast Cancer Program, UH Seidman Cancer Center, Cleveland OH
4Department of Medicine, Dana Farber Cancer Center, Boston MA
5Oncosalud, Lima, Perú; 6Instituto Nacional de Enfermedades Neoplásicas (INEN), Lima, Perú
Background

- Neoadjuvant chemotherapy (NAC) is used increasingly in triple-negative breast cancer (TNBC)
- The presence of residual disease (RD) at surgery correlates with an increased risk of metastatic recurrence
- We undertook integrated molecular analysis of the residual disease from a cohort of TNBCs after NAC to identify clinically actionable lesions that may:
 1. Be causally associated with chemotherapeutic resistance
 2. Be targetable in the adjuvant setting to eliminate residual micrometastases

Cohort

<table>
<thead>
<tr>
<th></th>
<th>Median</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>48</td>
<td>24</td>
<td>78</td>
</tr>
<tr>
<td>Stage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IIA</td>
<td>3</td>
<td>3%</td>
<td></td>
</tr>
<tr>
<td>IIb</td>
<td>5</td>
<td>5%</td>
<td></td>
</tr>
<tr>
<td>IIa</td>
<td>13</td>
<td>12%</td>
<td></td>
</tr>
<tr>
<td>IIb</td>
<td>77</td>
<td>69%</td>
<td></td>
</tr>
<tr>
<td>IIc</td>
<td>10</td>
<td>9%</td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>3</td>
<td>3%</td>
<td></td>
</tr>
<tr>
<td>Taxane</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>55</td>
<td>50%</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>53</td>
<td>48%</td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>3</td>
<td>3%</td>
<td></td>
</tr>
<tr>
<td>Menopause</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre</td>
<td>55</td>
<td>50%</td>
<td></td>
</tr>
<tr>
<td>Post</td>
<td>53</td>
<td>48%</td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>3</td>
<td>3%</td>
<td></td>
</tr>
<tr>
<td>Node status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pos</td>
<td>70</td>
<td>63%</td>
<td></td>
</tr>
<tr>
<td>Neg</td>
<td>37</td>
<td>33%</td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>4</td>
<td>4%</td>
<td></td>
</tr>
</tbody>
</table>

Balko et al, Cancer Discovery, in press.
Deep sequencing of the residual disease in NAC-treated TNBC

- 182 oncogenes and tumor suppressors in a CLIA certified lab (Foundation Medicine, Cambridge MA)
- Data were evaluable for 81 tumors, with a sufficient coverage to determine CNAs in 72/81
- Mean depth of coverage was 635 (range: 135-1207)

Balko et al, Cancer Discovery, in press.

This presentation is the intellectual property of the authors/presenters. Contact them at justin.balko@vanderbilt.edu for permission to reprint and/or distribute.

JAK2

- Janus-kinase 2 (JAK2) is a receptor-coupled tyrosine kinase which transmits cytokine-mediated signals to the STAT pathway to drive proliferation and differentiation
- JAK2/STAT signaling has been shown to play a role in promoting breast cancer ‘stemness’ and driving the proliferation of CD44+/CD24-basal-like breast cancer cells.

This presentation is the intellectual property of the authors/presenters. Contact them at justin.balko@vanderbilt.edu for permission to reprint and/or distribute.
JAK2 gains and amplifications are confirmed by a novel JAK2-FISH assay

PT 72003

Amplified cases
Average JAK2-CEN9 ratio

This presentation is the intellectual property of the authors/presenters. Contact them at justin.balko@vanderbilt.edu for permission to reprint and/or distribute.

JAK2 copy number increases with treatment and metastatic progression

• JAK2 gains and amplifications were more frequent in NAC-treated TNBC than in primary untreated BLBC (TCGA)

This presentation is the intellectual property of the authors/presenters. Contact them at justin.balko@vanderbilt.edu for permission to reprint and/or distribute.
JAK2 amplifications are rare in untreated primary TNBC

- Overt JAK2 amplifications appear to be rare in primary breast tumors, but do exist
- Primary untreated TNBC from a patient from City of Hope>>
 - Courtesy of Jean Simpson, MD; N=100 mixed subtypes

This presentation is the intellectual property of the authors/presenters. Contact them at justin.balko@vanderbilt.edu for permission to reprint and/or distribute

JAK2 amplifications are associated with high JAK2 mRNA expression and p-STAT3 in the TCGA

Data extracted from cBio data portal (TCGA)

This presentation is the intellectual property of the authors/presenters. Contact them at justin.balko@vanderbilt.edu for permission to reprint and/or distribute
JAK2 amplifications are represented in cell line and patient-derived xenograft (PDX) models

Breast Cancer Cell lines

<table>
<thead>
<tr>
<th>Cell Line</th>
<th>JAK2 Amplified</th>
</tr>
</thead>
<tbody>
<tr>
<td>KCC-3</td>
<td>*</td>
</tr>
<tr>
<td>MD4-21</td>
<td>*</td>
</tr>
<tr>
<td>MD4-364</td>
<td>*</td>
</tr>
<tr>
<td>MD4-56</td>
<td></td>
</tr>
<tr>
<td>MD4-78</td>
<td></td>
</tr>
<tr>
<td>KCC-70</td>
<td></td>
</tr>
</tbody>
</table>

Data courtesy of Melissa Landis and Jenny Chang

TNBC PDX models (N=22)

Data courtesy of Melissa Landis and Jenny Chang

This presentation is the intellectual property of the authors/presenters. Contact them at justin.balko@vanderbilt.edu for permission to reprint and/or distribute.

JAK2 amplifications are a negative prognostic factor in TNBC

<table>
<thead>
<tr>
<th>N</th>
<th>Percent recurrence-free</th>
<th>Percent survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>67</td>
<td>0.005</td>
<td></td>
</tr>
</tbody>
</table>

![Survival curves](image)

This presentation is the intellectual property of the authors/presenters. Contact them at justin.balko@vanderbilt.edu for permission to reprint and/or distribute.
Genes increased in JAK2-amplified patient tumors

- TGF-β-induced genes
- EMT gene signatures
- IL-6 expression

The JAK2 pathway in breast cancer

This presentation is the intellectual property of the authors/presenters. Contact them at justin.balko@vanderbilt.edu for permission to reprint and/or distribute.
Conclusions

- JAK2 amplifications occur in ~10% of neoadjuvant chemotherapy-treated TNBCs and are enriched during therapy and metastatic progression.
- Amplifications in JAK2 are represented in cell line and PDX models, representing useful tools for translational experiments.
- JAK2 amplifications correlate with higher expression of JAK2 and activation of downstream STAT3 which is sensitive to ruxolitinib treatment.
- JAK2 amplifications are associated with very poor prognosis and gene expression signatures of EMT.
- Ruxolitinib is a clinically approved targeted therapy which may be of benefit in JAK2-amplified patients, and this hypothesis is currently under investigation in translational and clinical studies.

This presentation is the intellectual property of the authors/presenters. Contact them at justin.balko@vanderbilt.edu for permission to reprint and/or distribute.

Acknowledgements

Vanderbilt

Arteaga Laboratory
- Carlos Arteaga, MD (Mentor)
- Jennifer Giltnane, MD, PhD
- Luis J. Schwarz, MD

VICC Breast Cancer Research Program
- Melinda Sanders, MD
- Gabriela Kuba, MD
- Monica Valeria Estrada, M.D.
- Violeta Sanchez, MS

Funding Agencies
- Vanderbilt Breast SPORE
- Susan G. Komen For The Cure Foundation
- Entertainment Industry Foundation

Collaborators

Foundation Medicine (Cambridge, MA)
- Gary Palmer, MD
- Vince Miller, MD
- Kai Wang, Ph.D.
- Roman Yelensky, Ph.D.
- Philip Stephens, Ph.D.

INEN and Oncosalud (Lima, Perú)
- Henry Gómez, MD
- Joseph Arturo Pinto

Dana Farber Cancer Center
- Nancy Lin, MD

CWRU School of Medicine
- Lyndsay Harris, MD

Houston Methodist Cancer Center
- Melissa Landis, PhD
- Jenny Chang, MD

Nanostring (Seattle, WA)

This presentation is the intellectual property of the authors/presenters. Contact them at justin.balko@vanderbilt.edu for permission to reprint and/or distribute.