Evaluation of the Pharmacokinetics of AG-221, a Potent Mutant IDH2 Inhibitor, in Patients with IDH2 Mutation-Positive Advanced Hematologic Malignancies in a Phase 1/2 Trial

Yue Gao, Bin Fan, Kha Le, Erika Manyak, Hua Yang, Katharine Yen, Sam Agresta, Eyal C. Attar, Jian Chen, Qiang Xu, Alessandra Tosolini, Jay M. Mei, Anjan Thakurta, Robert D. Knight, and Yan Li

Celgene Corporation, Summit, NJ; Agios Pharmaceuticals, Cambridge, MA

BACKGROUND

- Isocomtate dehydrogenase 1 and 2 (IDH1/2) are critical enzymes in the citric acid cycle that catalyze the production of α-ketoglutarate (α-KG) from isocitrate.
- Mutant IDH2 enzymes promote enzymsic production of an oncometabolite, D-2-hydroxyglutarate (D-HG), from α-KG.
- D-HG is secreted in a broad range of solid and hematologic malignancies and drives multiple oncogenic processes, including increased epigenetic histone and DNA methylation and impaired cellular differentiation in leukemic cell models
- AG-221 (CC-90007) is a first-in-class, oral, selective, potent inhibitor of mutant IDH2.
- In vivo studies, AG-221 reduced D-HG levels by ~90%, reversed histone and DNA hypermethylation, and induced cellular differentiation in leukemic cell models.
- Preliminary data show sustained reductions of D-HG in plasma associated with AG-221 treatment are dose- and exposure-dependent.

PHARMACOKINETIC (PK) ASSESSMENTS OF AG-221 IN HUMANS ARE UNDERWAY IN A PHASE 1/2 TRIAL

OBJECTIVES

- Assess dose proportionality of AG-221 exposure after single doses ranging from 50 to 450 mg in patients with advanced hematologic malignancies.
- Measure plasma AG-221 exposure after multiple daily doses over time.
- Determine the influence of patient-intrinsic factors on drug clearance.

METHODS

- Patients with advanced IDH2 mutation-positive acute myeloid leukemia (AML) or myelodysplastic syndromes (MDS) were enrolled.
- AG-221 was administered orally once or twice daily (QD or BID) in continuous 28-day cycles, in sequential patient cohorts with increasing AG-221 dosing:
 - 50, 75, 100, 150, 200, 300, or 450 mg QD
 - PK analyses were performed using WinNonLin® (Pharsight Corporation, Mountain View, CA).

RESULTS

- Plasma AG-221 concentrations in plasma were determined using a validated liquid chromatography-tandem mass spectrometry-based method.
- AG-221 concentrations in plasma were determined using a validated liquid chromatography-tandem mass spectrometry-based method.
- AG-221 plasma exposure after single oral doses (Day -3) and multiple doses (Cycle 2 Day 1) generally increased with dose (50 to 450 mg).
- AG-221 plasma exposure at the total same daily dose was comparable whether administered by QD or BID dosing.
- There was no clinically relevant impact of any patient-intrinsic factor – gender, age, weight, body surface area (BSA), or albumin levels – on AG-221 clearance.

CONCLUSIONS

- AG-221 exposure in the 50-450 mg range is broadly dose-proportional.
- Drug exposure is robust at steady state.
- These preliminary data show there is no clinically relevant effect of patient-intrinsic factors (sex, age, weight, BSA, race, and albumin levels) on AG-221 clearance.

ACKNOWLEDGMENTS

The authors acknowledge that Celgene sponsored this study. The authors received editorial assistance and printing support from MC2, Inc. (Sheila Truten and Kelly Dittmore), supported by Celgene Corporation.

REFERENCES

1. Fan et al. Haematologica 2015, Abstract 4104

DISCLOSURES

YG, JC, QX, AT, JMM, AT, RDK, YL: Employment and Stock Ownership, Celgene Corporation
BF, KL, EM, HY, KY, SA, ECA: Employment and Stock Ownership, Agios Pharmaceuticals

CORRESPONDENCE

Please direct questions on this poster to Yan Li (Email: yali@celgene.com)

DISCLOSURES

Copies of this poster obtained through the QR Code are for personal use only and may not be reproduced without permission from the author of this poster.